Water Recirculating Systems for Salmonid Production in North America

Steven Summerfelt

Conservation Fund Freshwater Institute Shepherdstown, West Virginia

Outline

RAS for salmon smolt in N. America
 Systems in Canada Maritimes and Maine
 Systems in British Columbia
 State & Federal culture systems
 Design considerations used for smolt RAS in North America

Why Recirculating Systems for Salmon?

RAS increases production on a given water resource

RAS provides the controlled environment

- increase 4-8°C ground water to 10-15°C
- Increase hardness, alkalinity, and/or salinity of typically extremely soft water supplies
 - Reduce fungal problems
 - Increase blood buffering capacity
 - Improve smoltification

Some claim RAS produce superior smolt

Why Recirculating Systems?

Provide strict biosecurity:

- Locate on smaller "pathogen-free" ground water resources;
 - smaller inlet flows are cheaper to disinfect.
- Smaller discharge flows are easier to screen and prevent escapement;
- Only certified pathogen free eggs are stocked
 - to prevent introduction of obligate fish pathogens

Recirculating Systems for Salmon

Commonly used for:
 Egg incubation/hatching
 First feeding to fry/parr production
 Smolt production
 Broodstock

RAS for Salmon Smolt Production

East Coast – Canadian Maritimes and Maine Penobscot Hatchery (ME) ✓ Atlantic Silver (Canada) Buckmans Creek (Canada) ✓ Oak Bay – smolt & broodstock (Canada) Green Acres Fish Hatchery (Canada) ✓ Bingham Hatchery (ME) • Flow-through system retrofit ✓Others

Penobscot Smolt Hatchery

Typical older design (built in late 1980's or 1990's)

- ✓ Slow (~2 hr) culture tank turn over rates
 - in-tank aeration and airlifts break-up solids within the tank
- Oversized (hard to clean) pump sumps
- Unique but less reliable fluidized-sand biofilter design
- Less than optimal aeration column design + oxygenation
- \checkmark No ozone, typically brown & turbid water with high CO₂

Oak Bay Hatchery, Cooke Aquaculture (NB)

Series of recent retrofits & upgrades ✓ smolt & broodstock

RAS for Salmon Smolt Production

- British Columbia, initial hesitation to use RAS for salmon smolt production.
- Smolt production capacity in RAS's in British Columbia now exceeds ~5 million smolt annually and is expanding.
 - ✓ Stolt's Crystal Waters Hatchery (Port Alice)
 - Flow-through retrofit 1st large RAS installed in mid-1990's.
 - Target Marine Hatchery (Sechelt)
 - Marine Harvest:
 - Big Tree Creek Hatchery (Campbell River)
 - Dalyrumpl (Campbell River)
 - Wolf Creek Hatchery (Prince Rupert)
 - ✓ West Coast Fish Culture (Powell River) & others in BC.

Target Marine Hatcheries

Two recirc modules for salmon smolt production (Sechelt, BC)

10

Target Marine Hatcheries Compact layout of a RAS module. ✓ About 10 m³/min recycle flow

(designed by PRAqua Technologies)

Target Marine Hatchery (BC) Pipe manifold type fluidized sand biofilter

Courtesy of PRAqua Technologies (BC) 12 FRESHWATER INSTITUTE

Marine Harvest Big Tree Creek Hatchery

Three recirc systems (~10 m³/min/system) for salmon smolt production (BEST SMOLT)

(designed by PRAqua Techn.)

> 13 Freshwater Institute

Big Tree Creek Smolt RAS

Drum filtration, pump through fluidized-sand biofilters, gravity flow through stripping column, low head oxygenation (plus O₃), and UV irradiation

Excellent water quality (clear water) & high quality smolt

Marine Harvest Big Tree Creek Hatchery ▶1st feeding salmon fry RAS (~ 4 m³/min)

Marine Harvest Big Tree Creek Hatchery► Hatching system to incubate eggs @ 3°C

State & Federal Culture Systems

USDA ARS National Cold Water Marine Aquaculture Center (Franklin, ME)

Atlantic salmon broodstock development facility

White River National Fish Hatchery (Bethel, VT)

Atlantic salmon smolt restoration hatchery

> Alaska Fish & Game

Fairbanks Sports Fish Hatchery (under construction)

- Anchorage Sports Fish Hatchery (under design)
 - 8 foot ball fields under one roof!

USDA ARS National Cold Water Marine Aquaculture Center

18

USDA ARS, Franklin, ME

13 BROODSTOCK CULTURE TANKS

Dual-Drain Tanks

Radial Flow Settlers

(vessels were stumpier than was optimal)

Low Head Oxygenator

Water falling from CO₂ stripper is directed to perimeter of LHO, away from distribution orifices
 Creates O₂ of 100-200%, adds O₃, drives out N₂

drawing courtesy of Marine Biotech

Partial RAS @ USFWS White River National Fish Hatchery (VT)

Partial RAS @ White River NFH

RAS Design Concepts in North America

26 Freshwater Institute

RAS Design

RAS design & management must provide sufficient water quality to maintain healthy and fast growing fish.

RAS's are designed to support a given carrying capacity, i.e., feed level

Water Quality Within RAS

Water quality within RAS depends upon the water flow (Q) and efficiency of waste removal (f_{rem}) at each unit process:

- ✓ Solids capture
 - filtration
 - Sedimentation
 - ozonation
- Carbon dioxide removal
 - aeration
- Ammonia removal
 - biofiltration

RAS Design

Achieving 100% waste removal efficiency every pass would produce water quality of flow-through system.

Water Quality Within RAS

Treatment efficiency (f_{rem}) controls water quality!
✓ Not system exchange rate!

 $\underline{\text{EXAMPLE}}: @ f_{\text{rem}} = 0.8, \text{R} = 0.8 \text{ to } 0.99$ $[waste]_{\text{tank}} = \left\{ \frac{1}{1 - R + (R \cdot f_{rem})} \right\} \cdot \frac{P_{waste}}{Q}$ $= \{1.19 \text{ to } 1.25\} \cdot \{\text{single pass outlet conc.}\}$

Water Quality Within RAS

Treatment efficiency (f_{rem}) controls water quality!

RAS Design

BMP #1:

select unit processes that provide high waste removal efficiencies within coldwater RAS!

Treatment efficiency $(f_{rem}) \ge 0.6$

RAS Design BMP #1.1:

Concentrate Solids with Dual-Drain Tanks
 Use radial flow settlers to improve TSS capture in concentrated underflow (f_{rem} = 60 - 80%)
 Treat Entire RAS Flow with Drum Filters

100'S of Sidewall-Type Dual-Drain Tanks in North America:Fractionate solids & optimize water rotational velocity profile across tank

Large-Scale Circular Tanks

Rapid solids fractionation using dual-drains

	Partial-reuse	Fully-recirc
	system	system
	TSS (mg/L)	TSS (mg/L)
Tank inlet flow	1.3-1.5	2-3
Side-drain flow	1.9-2.5	3-4
Bottom-drain flow	13-26	15-25

Make-up water contained 0.5 ± 0.2 mg/L TSS

Davidson and Summerfelt. 2004. Aquacultural Engineering 32, 245-271.

Radial Flow Settler Captures Solids More Efficiently than Swirl Separator

Davidson & Summerfelt (2005). Aquacultural Engineering.

50

RAS Design

BMP #1.2:

Design *forced-ventilated aeration columns* to remove $(f_{rem}) \ge 60\%$ of CO₂ each pass through RAS

Large Scale Technologies for O₂ & CO₂ Control

Forced-ventilated cascade aeration columns treat recirculating water before it flows through low head oxygenation units.

BAT for O₂ & CO₂ control in salmonid RAS's.

Summerfelt et al. 2000. Aquacultural Engineering.

Large Scale Technologies for O₂ & CO₂ Control

Gas balancing

- ✓ 1^{st} strip CO₂
- ✓ 2^{nd} add pure O_2 in LHO
 - Sometimes add O₃ in feed gas (disinfection & fine solids removal)
- ✓ 3rd − maintain O₂ at saturation in culture tanks.

Low Head Oxygenators (LHO)

PRAqua Supplies, Ltd.

Supplemental O₂ Control at each Tank

Downflow bubble contactor

treats sidestream
 flow withdrawn
 from sidewall box

> NO IN-TANK AERATION!!!

RAS Design

BMP #1.3:

design *fluidized-sand biofilters* to remove $(f_{rem}) \ge 80\%$ of TAN each pass and maintain NO₂-N < 0.1-0.2 mg/L

Fluidized-Sand Biofilters

Fluidized-sand biofilters used in many salmonid RAS
 ✓ Highly efficient, low cost, compact, and robust.

- ✓ Sand: Effective Size $(D_{10}) = 0.18$ mm
 - Expands 60-100% at 0.7 cm/s superficial velocity

Fluidized-Sand Biofilters

Scale to treat large flows > 10 m³/min

- ▶ provide high (≥ 80%) TAN removal efficiencies
- > maintain low ($\leq 0.1-0.2$) NO₂-N levels
- Capital cost efficient
 - high specific surface areas (11,000 m²/m³)
 - ✓ low media cost (\$40-70/m³ of sand)
- reliable if well designed, non-plugging.

Fluidized-Sand Biofilters

► TAN removal efficiency.

	g TAN removed per day		TAN
	per m ² surface area	per m ³ static sand vol.	Removal Efficiency
<u>Coldwater</u> fluidized-sand biofilt fine sand, ~11,500 m ² /m ³ $D_{10} = 0.17-0.25$ mm	0.06	700	70-90%
<u>Warmwater</u> fluidized-sand biofilt coarse sand, ~5,000 m ² /m ³	0.2	1000	10-30%
$D_{10} = 0.6 - 0.8 \text{ mm}$			

(summarized by Timmons & Summerfelt, 1998)

Flow Distribution Mechanisms Flow distribution methods vary, but are all important!

orifices distributed across false-floor (controlling ΔP) orifices distributed across pipe-manifold (controlling ΔP) slotted inlet about circumference (NO controlling ΔP)

Distribution Through False Floor

Eric Swanson's method (used in Maritime Canada) flow injection underneath a false floor.

false-floor distribution plate 47

FRESHWATER INSTI

Modified pipe-lateral distribution manifold.

Modified pipelateral distribution manifold above abrasion resistant floor

Example FSB in salmon smolt RASs at Marine Harvests Big Tree Creek Hatchery

(system designed by PRAqua Tec

50 Freshwater Institute

- To create uniform flow distribution:
 - ✓ Pressure drop (△P) across orifice should be ≥ headloss through the sand bed (i.e., ≥ depth of static sand):

$$\Delta P_{\text{orif}} = \left[\frac{Q_{\text{orif}}}{C \cdot A_{\text{orif}}}\right]^2 \cdot \frac{1}{2 \cdot g}$$

 Q_{orif} = flowrate in m³/s A_{orif} = orifice area in m² C = 0.6 and g = 9.81 m/s²

Cyclo Biofilter™

 Water injected tangentially into circular plenum and through slotted inlet about its base.
 ✓ Developed by Marine Biotech Inc. (Beverly, MA)

Cyclo Biofilter™

- USDA ARS National Cold Water Marine Aquaculture Center, Franklin, ME
 - ✓ compact trt system
 - 2.74 m dial
 - 101 kg feed/day sustained capacity
 - lightly loaded
 - ✓ treats 3.5 m³/min,
 - about 60% of 5 m³/min RAS flow

Cyclobio FSB @ Freshwater Inst.

Dimensions: ✓ 2.7 m (9 ft) dia > Static sand capacity: ✓ 1.5 m (5 ft) depth ✓ 8.5 m³ (300 ft³) volume ✓ assimilates TAN from 160 kg feed/day ✓ \$1000-1500 for sand treats 3.5 m³/min, ✓ about 60% of RAS flow > 4.7 m³/min RAS flow ✓ Two 5-HP pumps

Process Elevations @ NCWMAC

Height of Cyclobio was set at 6.4 m : Elevation required to gravity flow from top of cyclobio, • through CO2 stripper, • through LHO unit, through LHO head tank, through fish culture tanks, through drum filter, and back to pump sump

Process Elevations @ NCWMAC

RAS Design

(courtesy of PRAqua Technologies)

Thank you for your attention!