Investigating the Health and Welfare of Rainbow Trout in Recirculating and Flow-through Aquaculture Systems

Christopher Good¹, John Davidson¹, Carla Welsh¹, Tom Waldrop¹, Luke Keener¹, Kevin Snekvik², Brett Kenney³, Frederic Barrows⁴, and Steven Summerfelt¹

> ¹The Conservation Fund Freshwater Institute, Shepherdstown, WV ²Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA ³Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV ⁴Hagerman Fish Culture Experiment Station, Hagerman, ID

Presentation Outline

- Summaries of two studies conducted at The Freshwater Institute:
 - Evaluating the health of rainbow trout in recirculating systems operated under high feed and low flushing conditions
 - 2. A factorial study assessing performance, fin condition, and fillet quality of rainbow trout reared at two different densities and fed fishmeal- or grain-based diets

Previous Observations at The Freshwater Institute

During **low flushing** (1-2% water exchange) and **high feeding** (1.3-2.0 kg/d per m³/d makeup flow):

- Elevated morbidity and mortality
- Unknown causation
- No infectious causes suspected
- Water quality parameters within safe limits

Study Objectives

- Investigate this potential barrier for RAS managed with high feeding rates; specifically:
 - 1. Assess fish performance in high vs. low makeup water exchange systems
 - 2. Assess fish health and welfare in these conditions through
 - i. organ histopathological evaluation
 - ii. plasma chemistry analyses
 - iii. fin condition assessments
 - 3. Monitor changes and differences in water quality between the two treatments

Recirculating Aquaculture Systems

Identical Recirculating Aquaculture Systems (6)

Small Flow-Through Comparison Tanks (3)

6300 rainbow trout raised for 6 months Stocked at 6 months of age (approx. 135g) ■ 1000 per RAS plus 100 per flow-through (initial #s) \sim 40(min) - 80(max) kg/m³ density **3** RAS with high makeup $H_2O(2.6\%)$ Randomized ■ 3 RAS with low makeup (0.26%) Mean feed loadings of 0.39 and 4.1kg/day per m³/day makeup flow, respectively

High Makeup H₂O Exchange

vs.

Low Makeup H₂O Exchange

High Makeup H₂O Exchange

vs.

Low Makeup H₂O Exchange

Data Collection

- Monthly length/weight sampling
- Daily mortalities
- Tissue sampling every 2 months for histopathological evaluation (5 fish per tank) – Washington Animal Disease Diagnostic Laboratory
 - Skin, gill, heart, liver, spleen, swim bladder, anterior and posterior kidney
- End-of-study plasma collection (5 fish per tank) for small animal chemistry panel – Animal Health Diagnostic Center, Cornell University
- End-of-study fin quality assessment
- Water quality analysis 2-3 times/week

Results: Water Quality

- Significant differences

 (p<0.05) between
 high/low makeup:
 TAN, nitrite, nitrate,
 cBOD₅, TSS, true color,
 UV transmittance,
 - phosphorus, copper, sulfur

Parameter	High Makeup	Low Makeup	Flow-through
TAN (mg/L)	0.29 ± 0.00	0.48 ± 0.05	0.22 ± 0.01
Unionized Ammonia (mg/L)	0.002 ± 0.000	0.004 ± 0.000	0.001 ± 0.000
Nitrite (mg/L)	0.041 ± 0.005	0.0095 ± 0.005	0.011 ± 0.001
Nitrate (mg/L)	12 ± 0	70 ± 4	2 ± 0
Alkalinity (mg/L)	226 ± 1	214 ± 4	261 ± 0
CO2 (mg/L)	9 ± 0	9 ± 0	13 ± 0
cBOD5 (mg/L)	2 ± 0	6 ± 1	1 ± 0
True Color (Pt-Co units)	11 ± 1	74 ± 9	1 ± 0
UV Transmittance (%)	89 ± 0	53 ± 4	97 ± 0
Phosphorous (mg/L)	0.52 ± 0.01	3.11 ± 0.22	0.08 ± 0.01
TSS (mg/L)	2.7 ± 0.1	6.4 ± 1.2	1.7 ±0.1
Temperature (oC)	13.2 ± 0.0	13.2 ± 0.1	12.6 ± 0.0
pН	7.53 ± 0.03	7.54 ± 0.04	7.67 ± 0.00
DO (mg/L)	10.0 ± 0.0	10.0 ± 0.1	10.6 ± 0.0

Results: Mortality

Mean cumulative mortality risk rates:
 High Makeup = 0.74%
 Low Makeup = 1.69%

• Flow-through = 1.12%

No significant differences

Results: Performance

Growth Rate with High and Low Makeup Water and Flow Through (Comparison) Treatments

Results: Performance

Mean Final Weight:

- High makeup: **1401g**
- Low makeup: **1366g**
- Flow-through: **1253g**

Mean TGC:

- High makeup: **2.64**
- Low makeup: **2.62**
- Flow-through: **2.56**

No significant differences

Growth Rate with High and Low Makeup Water and Flow Through

- <u>Low (vs. High) makeup</u> <u>H₂O (overall results)</u>
- Bivariate logistic regression models comparing presence/absence of histopathological lesions in fish reared in high vs.
 low makeup RAS (all sampling data combined)

Tissue	Odds Ratio	95% Conf. Int.	p-value
Gill	0.48	(0.16, 1.41)	0.179
Liver	1.64	(0.61, 4.44)	0.327
Heart	1.00	(0.45, 2.21)	1.000
Spleen	1.57	(1.02, 2.42)	0.042
Anterior kidney	0.48	(0.17, 1.34)	0.162
Posterior kidney	0.34	(0.21, 0.57)	<0.000
Swim bladde r			
Skin	2.92	(1.76, 4.85)	<0.000
> 1 tissue affected	1.23	(0.64, 2.36)	0.539
> 2 tissues affected	1.12	(0.58, 2.18)	0.734

Day

Low (vs. High) makeup

- <u>H₂O</u>
- <u>(individual samplings)</u>
- Bivariate logistic regression models comparing presence/absence of histopathological lesions in fish reared in high vs. low makeup RAS (all p<0.10 models shown)

Tissue	Sample (1-4)	Odds Ratio	95% Conf. Int.	p-value
Liver	3	7.00	(1.00, 49.23)	0.051
Skin	4	4.33	(1.58, 11.91)	0.004

<u>Recirc. (vs. Flow-Through)</u> (overall results)

 Bivariate logistic regression models comparing presence/absence of
 histopathological lesions in
 fish reared in recirculating
 vs. flow-through systems
 (all sampling data
 combined)

Tissue	Odds Ratio	95% Conf. Int.	p-Value
Gill	1.64	(0.70, 3.84)	0.254
Liver	0.52	(0.23, 1.16)	0.111
Heart	2.11	(1.44, 3.10)	<0.000
Spleen	2.47	(1.56, 3.90)	<0.000
Anterior kidney	0.74	(0.20, 2.73)	0.647
Posterior kidney	0.76	(0.22, 2.60)	0.667
Swim bladder	2.03	(0.24, 17.56)	0.513
Skin	1.92	(0.60, 6.15)	0.274
> 1 tissue affected	1.37	(0.71, 2.65)	0.345
> 2 tissues affected	1.61	(0.85, 3.05)	0.147

Recirc. (vs. Flow-Through)

<u>(individual samplings)</u>

 Bivariate logistic regression models comparing presence/absence of histopathological lesions in fish reared in recirculating vs. flow-through systems (all p<0.10 models shown)

Tissue	Sample (1-4)	Odds Ratio	95% Conf. Int.	p-Value
Gill	4	2.67	(0.88, 8.12)	0.084
Liver	3	0.17	(0.05, 0.55)	0.003
Spleen	3	4.97	(1.29, 19.17)	0.020
> 1 tissue affected	4	4.57	(1.08, 19.26)	0.038
> 2 tissues affected	4	6.00	(0.88, 40.94)	0.067

Results: Plasma Chemistry

Parameter	Treatment	Mean	SE	Significance*
Potassium	High Makeup	2.37	0.84	В
(mEq/L)	Low Makeup	2.41	0.83	
	Flow-through	1.73	1.06	
Chloride	High Makeup	124.1	0.80	A, B
(mEq/L)	Low Makeup	131.0	1.24	
	Flow-through	122.1	1.04	
Urea Nitrogen	High Makeup	15.9	0.62	A, B
(mg/dL)	Low Makeup	19.0	0.80	
	Flow-through	<2	0.00	
Phosphate	High Makeup	12.6	12.6	В
(mg/dL)	Low Makeup	12.7	12.7	
	Flow-through	14.6	14.6	
Glucose	High Makeup	78.1	5.27	В
(mg/dL)	Low Makeup	76.4	6.99	
	Flow-through	88.1	4.60	

* Significance: $\mathbf{A} = p < 0.05$ High Makeup vs. Low Makeup; $\mathbf{B} = p < 0.05$ Recirc. vs. Flow-through

Results: Caudal Fin Assessment

Good Condition

Moderate Condition

Poor Condition

	Mean Prevalence at End-of-Study			
	Good	Moderate	Poor	
High Makeup	96/111 (87%)	9/111 (8%)	6/111 (5%)	
Low Makeup	70/111 (63%)	21/111 (19%)	20/111 (18%)	
Significance	p<0.05	p<0.05	p<0.05	

Conclusions

- Unable to replicate previous observations
- Fish performed surprisingly well under high feed and low flushing conditions
- Some statistically significant subclinical (histopathological lesions, plasma chemistry) and clinical (caudal fin condition, mortality) differences noted between treatments
 - Did not affect fish performance during study period

A Factorial Study Assessing Performance, Fin Condition, and Fillet Quality of Rainbow Trout *Oncorhynchus mykiss* Reared at Two Different Densities and Fed Fishmeal- or Grain-based Diets

Fin Erosion

- Common problem seen in many species of farmed fish
- Still poorly understood; complex, multifactorial etiology
- Both density and nutritional factors considered important in its development
- Observed at The Freshwater Institute in rainbow trout in both recirculating and flow-through systems

Study Objectives

Investigate the associations of diet and density with:
Fin condition
Fish performance
Fillet quality

Materials and Methods 2X2 Factorial Study Design Two diets:

Traditional Fish Meal-based

Grain-based

Low: 20-40 kg/m³

Both diets:

- Formulation developed by Rick Barrows
- Same caloric content
- Small sizes produced at the Feed and Nutrition Laboratory (USFWS Bozeman Fish Technology Center, MT)
- Larger sizes produced by Silver Cup Feed (Nelson & Son Inc., Murray, Utah)

Identical Flow-Through Circular Tanks

12 tanks total:3 replicates of each diet/density combination;randomly assigned

10

- Rainbow trout raised from sac-fry to 650-900g in 312 days in 500L flow-through tanks (~12.5°C)
- Daily mortality and monthly length/weight data
- End-of-study assessment:
 - Fin indices (all rayed fins; fin length standardized by fork length)
 - Visceral evaluation: visceral index, liver index, spleen index
- Fillet quality: cook yield, texture, pesticide and PCB content

Results

Proximate analyses:

Fish Meal-Based Diet			
Moisture	5.77%		
Protein	41.1%		
Fat	13.26%		
Fiber	1.29%		
Ash	8.95%		

Grain-Based Diet				
Moisture	6.02%			
Protein	49.6%			
Fat	17.7%			
Fiber	0.19%			
Ash	6.24%			

Results

Fish appearance:

- Enhanced coloration of skin and fillet in fish fed grain-based diet
- Small amount of pigment added to grain-based diet, so difficult to determine true association of grainbased ingredients with coloration

Fish Meal-based diet

Grain-based diet

Results: Performance

	Fish Meal <u>Diet</u>	Grain <u>Diet</u>	
Parameter	Mean ± SD	Mean ± SD	p- value
Weight (g)	866.1 ± 72.04	677.1 ± 68.67	0.001
Length (mm)	364.9 ± 10.88	345.1 ± 8.315	0.005
FCR	1.163 ± 0.047	1.059 ± 0.079	0.018
TGC	2.457 ± 0.066	2.374 ± 0.124	0.180
Mortality Risk Rate	0.032 ± 0.008	0.022 ± 0.005	0.025
	High <u>Density</u>	Low <u>Density</u>	
Weight (g)	794.1 ± 150.9	749.1 ± 85.73	0.538
Length (mm)	359.3 ± 16.06	350.7 ± 10.94	0.304
FCR	1.101 ± 0.112	1.122 ± 0.046	0.674
TGC	2.442	2.389	0.400
	± 0.089	± 0.119	
Mortality	0.026	0.0263	0.696
Risk Rate	± 0.009	± 0.008	

Results: Fin Quality and Diet

	Diet	Diet	
Fin	Mean ± SD	Mean ± SD	p- value
Left pectoral	0.108 ± 0.009	0.117 ± 0.009	0.001
Left pelvic	0.088 ± 0.009	0.096 ± 0.016	0.067
Anal	0.099 ± 0.013	0.104 ± 0.010	0.005
Dorsal	0.088 ± 0.009	0.095 ± 0.014	0.137
Caudal, dorsal	0.109 ± 0.009	0.113 ± 0.009	0.025
Caudal, ventral	0.105 ± 0.008	0.112 ± 0.010	0.002
Right pectoral	0.107 ± 0.008	0.118 ± 0.007	0.001
Right pelvic	0.097 ± 0.008	0.105 ± 0.008	0.001

Grain

Results: Fin Quality and Density

Results: Visceral Evaluation

Parameter	Fish Meal Diet Mean ± SD	Grain Diet Mean ± SD	p-Value
Visceral index	0.143 ± 0.018	0.117 ± 0.016	0.001
Liver index	0.015 ± 0.002	0.012 ± 0.001	0.001
Spleen index	0.0012 ± 0.0005	0.0012 ± 0.0006	0.601

Parameter	High Density Mean ± SD	Low Density Mean ± SD	p-Value
Visceral index	0.131 ± 0.017	0.129 ± 0.025	0.791
Liver index	0.013 ± 0.002	0.013 ± 0.002	0.831
Spleen index	0.0013 ± 0.0005	0.0012 ± 0.0005	0.499

Results: Fillet Quality

Parameter	n	Fish Meal Diet Mean ± SD	Grain Diet Mean ± SD	p-Value
Fillet yield (%)	60	49.7 ± 2.10	50.5 ± 1.60	0.123
Cook yield (%)	60	84.5 ± 2.14	84.7 ± 1.82	0.847
Texture (g/g wt)	60	337.1 ± 71.4	330.0 ± 45.5	0.727
DDE * (ug/g)	18	0.0059 ± 0.0019	0.0064 ± 0.0031	0.779
PCB * (ppm)	18	0.0069 ± 0.0035	0.0048 ± 0.0042	0.145

* DDE and PCB analyzed in high density tanks only

Parameter	n	High Density Mean ± SD	Low Density Mean ± SD	p-Value
Fillet yield (%)	60	50.0 ± 1.60	50.2 ± 2.20	0.731
Cook yield (%)	60	84.6 ± 2.05	84.6 ± 1.93	0.909
Texture (g/g wt)	60	327.8 ± 62.4	339.3 ± 56.8	0.574

Conclusions

Important Findings:

- Diet appeared to be much more influential than density for both fish performance and fin condition
- <u>Performance</u>: Fish were significantly larger and had better FCR with fish meal diet, but had significantly higher mortalities
- **Fin condition:** Most fins were significantly more healthy with grain-based diet
- Fillet quality: No significant differences in pesticide or PCB content (*low power?*). No significant difference in fillet yield.
- Further assessments:
 - fillet fatty acid profiles
 - intestinal histopathology

Acknowledgements

Dr. Rick Barrows

Hagerman Fish Culture Experiment Station, Hagerman, ID

Dr. Brett Kenney

Division of Animal and Nutritional Sciences, West Virginia University

Dr. Kevin Snekvik

Washington Animal Disease Diagnostic Laboratory, Washington State University

All research was supported by the Agriculture Research Service of the United States Department of Agriculture, under Agreement No. 59-1930-5-510.

Opinions, conclusions, and recommendations are of the authors and do not necessarily reflect the view of the USDA.

All experimental protocols involving live animals were in compliance with Animal Welfare Act (9CFR) and have been approved by the Freshwater Institute Animal Care and Use Committee.