Disclaimer

This is an unedited presentation given at the Global Conference on Aquaculture 2010. The Organising Committee do not guarantee the accuracy or authenticity of the contents.

Citations

Please use the following citation sequence with citing this document:

1. Author.
2. Title.
Expert Panel Presentation 1.2:
Novel and emerging technologies: can they contribute to improving aquaculture sustainability?

By Dr. Craig L. Browdy

22–25 September 2010, Phuket, Thailand

Contributing Authors:
Dr Gideon Hulata, Dr Zhanjiang Liu, Dr Geoff L. Allan, Dr Christina Sommerville, Dr Thales Passos de Andrade, Dr Rui Pereira, Dr Charles Yarish, Dr Muki Shpigel, Dr Thierry Chopin, Dr Shawn Robinson, Dr Yoram Avnimelech

FAO Expert:
Mr Alessandro Lovatelli
Sustainable aquaculture’s challenges

- Feeding people
- Socioeconomic development
- Environmental responsibility
- Profitability

Can we have our cake and eat it too?
Are there opportunities for “win/win” solutions?

Necessity is the mother of invention.
Plato

Innovation distinguishes between a leader and a following.
Steve Jobs
Broiler Breeding vs. Nutrition

- breeding accounts for 85 to 90% of change in broiler growth rate 1957-2001
- Issues: skeletal, stress tolerance, reproduction

Genetic Improvement

- Less than 20% of aquaculture production
- Selective breeding programs
 - Species selection
 - Closing the life cycle in captivity
 - ICES guidelines for founder stocks (SPF stocks)
 - Biosecure nucleus breeding centers
 - Selection strategies
 - Avoiding inbreeding
 - Mating designs, statistical methods, pedigree tracking
 - Individual and family selection, walk-back selection
Selective breeding programs

- Atlantic cod (*Gadus morhua*)
- Atlantic salmon (*Salmo salar*)
- Common carp (*Cyprinus carpio*)
- Gilthead seabream (*Sparus aurata*)
- Hybrid striped bass (*Morone chrysops × M. saxatilis*)
- Lake Malawi tilapia (*Oreochromis shiranus*)
- Mediterranean sea bass (*Dicentrarchus labrax*)
- Nile tilapia (*O. niloticus*)
- Red sea bream (*Pagrus major*)
- Rohu carp (*Labeo rohita*)
- White shrimp (*Litopenaeus vannamei*)
- Tiger shrimp (*Penaeus monodon*)
- Pacific oyster (*Crassostrea gigas*)
- Sydney rock oyster (*Saccostrea glomerata*)
- Green-lipped mussel (*Perna canaliculus*)

Production-related traits

- Growth
- Age at maturity; Rainbow trout
- Eliminating vertebral deformity; Atlantic salmon, Atlantic cod
- Feed efficiency; Atlantic salmon
- Reproductive traits; Coho salmon
- Stress, disease and parasite resistance; Rainbow trout, Atlantic salmon, White shrimp, Sydney rock oyster

Consumer-related traits

- Appearance; Rainbow trout
- Body composition; Rainbow trout
- Carcass quality, yield; Coho salmon, pacific oyster
Transgenics

- Gene transfer technologies
 - Microinjection, electroporation, retroviral vectors, particle gun bombardment, sperm and testis-mediated methods, embryonic stem cells
 - Control over integration and expression

- Traits
 - Growth (salmonids, mud loach)
 - Disease resistance (catfish, grass carp)
 - Cold tolerance (salmon)

Genetically modified organisms

- Issues and risks
 - Environmental
 - Biodiversity and natural ecosystems
 - Food safety
 - Regulatory
 - Animal welfare

Risks must be honestly and accurately analyzed and understood by society for potential benefits to be realized

Genomic enablement

- Gene Discovery
- Expression analysis
- Marker assisted selection
Gene discovery and identification

- Expressed sequences
 - Target tissue RNA
 - Message sequencing
 - Increasing availability
 - Atlantic Salmon
 - Rainbow trout
 - Catfish
 - Oysters
 - Shrimp
- High throughput transcriptome sequencing
 - Generation of large numbers of ESTs from RNA
 - Expression profiling
 - Whole genome sequencing for aquaculture species

Gene expression analysis

STIMULUS
- PHYSIOLOGICAL
 - Hormonal, metabolic
- ENVIRONMENT
 - Infection, physical, chemical, biological stress

RESPONSE
- Development, Differentiation
- Infection or Immunity
- Stress Response
 - Physiology/Pathology

GENE EXPRESSION
- Use of the Transcriptome as a Classifier
- Identification of Up- or Down-Regulated Genes
- Hypothesis - Driven Molecular Mechanistic Science

Ecogenomics

Microarray development

- Salmonids
 - 3500; Rise et al., 2004a
 - 16000; von Schalburg et al., 2005
 - 9000; Bonnet et al., 2007
 - 32000; Koop, in progress
 - 22000; Koop, in progress
 - 950; Taggart et al., 2008

- Catfish
 - 660; Ju et al., 2002
 - 19000; Li et al., 2006
 - 28000; Peatman et al., 2007, 2008; Liu et al., 2008

- Oysters
 - 9000; Jenny et al., 2007

- Carp
 - 13400; Gracey et al., 2004
 - 13000–26000; Williams et al., 2008

- Atlantic halibut
 - 9277; Douglas et al., 2008

- European flounder
 - 3336; Diab et al., 2008

- Rainbow trout
 - 37000; Salem et al., 2008
 - 21500; Olohan et al., 2008

- Three-spined stickleback
 - 9692; Geoghegan et al., 2008

- Fathead minnow
 - 15000; Klaper et al., 2008
 - 4105; Kane et al., 2008
 - 2000; Villeneuve et al., 2008

- Goby
 - 12661; Gracey, 2008

- Largemouth bass
 - 15950; Garcia-Reyero et al., 2008

- Sea bream
 - 10000; Sarropoulou et al., 2005

- Shrimp
 - 3853; de la Vega et al., 2008;
 - 2469; Robalino et al., 2007
 - 3136; Wang et al., 2006

- Sea bream
 - 10000; Sarropoulou et al., 2005

Hypotheses regarding antiviral immune responses in shrimp

virus

environment

RESISTANCE

MORBIDITY

MORTALITY

Robalino et al 2007 Physiological Genomics, Robalino et al 2009 Veterinary Immunology and Immunopathology
Hypotheses regarding antiviral immune responses in shrimp

Robalino et al 2007 Physiological Genomics, Robalino et al 2009 Veterinary Immunology and Immunopathology
Genomic enablement

• Marker technologies
 • Allozyme markers, mitochondrial markers
 • Restriction Fragment Length Polymorphism (RFLP)
 • Amplified Fragment Length Polymorphism (AFLP)
 • Microsatellites
 • Single Nucleotide Polymorphisms (SNP)

• Uses in aquaculture
 • Analysis of population structure, diversity
 • Stock, strain, hybrid parentage identification
 • Genetic linkage analysis

Genome mapping

• Gene Linkage Mapping
 • Rainbow trout: 1359, 1439
 • Brown trout: 302
 • Atlantic salmon: 527, 64
 • Arctic char: 327
 • Common carp: 272
 • Tilapia: 174, 292, 552
 • Channel catfish: 293, 506
 • Walking catfish: 146
 • Yellow croaker: 375
 • Gilthead sea bream: 204
 • Atlantic halibut: 350
 • Tiger shrimp: 673
 • Kuruma prawn: 246, 401
 • White shrimp: 394
 • Chinese shrimp: 231-241
 • Eastern oyster: 13-158
 • Pacific oyster: 102, 349
 • Zhikong scallop: 545, 503
 • Pacific abalone: 384
 • Sea urchin: 324-339

• Physical mapping (BAC)
 • Atlantic salmon, tilapia, channel catfish, rainbow trout

• Enabling full genome sequencing

Liu 2009 New Technologies
Microsatellite identified with single locus dominant effect for resistance to lymphocystis disease
- Homozygous female bred with commercial strain male
- Heterozygous progeny with no incidence of disease

Challenges
- Diversity of species
- Costs and logistics
- Biosecurity
- Bioinformatics
- Policy and regulatory issues

Fuji et al 2007 Aquaculture
Aquatic animal health

- Diagnostic technologies
 - Molecular and serological diagnostics
 - Cost, speed, sensitivity and specificity
 - Loop-mediated isothermal amplification (LAMP)
 - edwardsiellosis, enteric septicemia of catfish, nocardiosis, PKD, IHN, WSSV, IMNV
 - Multiplex tests: Luminex bead based, microarray
- Nanotechnology
 - antibody coated magnetic particles

Pathogen host interactions

- Pathogen biology
- Host defenses
 - Shrimp and bivalve immunology
 - Immunomodulatory interrelationships
- Epidemiology and spread
Disease control

- Regulatory issues, translocation of stocks, quarantine
- Site selection and permitting
- Systems design and management
- Fallowing, single year class stocking
- Nutrition, pre and probiotics, immunostimulants, oxidative balance

- SPR stocks
 - Selected
 - Transgenic
- Biopesticides, biological control
- New Vaccines and therapeutics

Vaccines

- Salmonid heptavalent vaccines
 - *Listonella (Vibrio) anguillarum* serotypes O1 and O2, *V. salmonicida, Moritella viscous, Aeromonas salmonicida*, the causative agents of vibriosis, Hitra disease, winter ulcer disease, furunculosis and infectious pancreatic necrosis virus (IPNV)

- Live attenuated bacterial vaccines
 - *Edwardsiella ictaluri* and *Flavobacterium columnarace*, Channel catfish and one viral vaccine (KHV for Carp in Israel)

- Commercial vaccines from inactivated bacterial pathogens, fewer viral vaccines, none against parasites.

- New vaccine development
 - recombinant expressed viral protein - IPNV vaccine
 - DNA vaccine - sequences encoding for rhabdovirus glycoproteins
 - Bacteriophage delivery systems
 - Protected oral vaccines - delivery systems
Disease control

- **Chemotherapeutants**
 - Prophylactic and improper antibiotic use being reduced, increasing regulation
- **Regulatory and safety issues**
 - Efficacy in treating the disease
 - Animal safety – tolerance, welfare
 - Food safety issues for the consumer
 - Maximum residual levels, withdrawal period
- **Quality**
- **Environmental issues – ecotoxicology**
 - Bath treatments; oral; slow release implants
- **Development and registration cost vs. market size**
- **Pathogen resistance – need multiple treatment options**
- **New technologies, gene silencing**

Integrated pest management

Sommerville 2009 New Technologies
Feeds and feeding

- Improved feed formulation strategies based on nutrient availabilities and specific requirements
 - Ingredient digestibility, palatability, nutrient utilization
 - Species specific requirements
 - Near infrared spectroscopy, in vitro analyses, nutritional modeling, amino acid utilization
- Improving feed production technologies
 - Energy efficiency
 - Extrusion
 - Floating feeds
 - Leaching pellet stability, physical qualities
 - Fine grinding, microextrusion
 - Preconditioning
 - Drying
- Functional feeds
 - Stress, finishing, probiotics/prebiotics, lifecycle/seasonal

Feed production - fish meal and fish oil use

- Aquaculture will need to produce an additional 29 million tons of food fish per year to maintain current consumption rates by the year 2030
- Aquaculture 4% of global animal feed
 - 20.2 to 22.7 million tones
- Uses 68.2% total reported fish meal production

Simple Facts:
1) Supply is limited
2) Use is increasing
3) Prices are going up
4) Toxin levels a concern
Feeds and feeding

• Alternative Plant based protein sources
 • Soybean products
 • Corn products
 • Wheat and barley
 • Canola/rapeseed products
 • Distillers products
 • Peas and lupins

• Problems
 • Antinutrients
 • Trypsin inhibitor
 • Phytic acid
 • Saponins
 • Lectins
 • Non-digestible compounds
 • Non soluble carbohydrates
 • Resistant starch
 • Fiber
 • Palatability
 • Essential AA, HUFA

Improving use of alternative ingredients

• Nutrient availabilities and specific requirements
• Plant breeding to reduce non digestible carbohydrates
• Use of protein concentrates
• Use of microbial enzymes such as phytase
• Use of supplementary amino acids
• Protein recovery prior to fermentation to improve DDGS
• Pallatants and attractants
Improving use of alternative ingredients

- Microbial proteins
 - Algal meals
 - Yeast
 - Bacteria
- Rendered products
 - Bovine, ovine and porcine meals
 - Blood meals
 - Poultry meals
- Seafood processing waste
- Sustainable use of plankton and krill

Improving use of alternative ingredients

- Oils
 - Blending fish and plant oils to meet energy requirements
 - EPA and DHA
 - Use of high quality fish oils
 - GM oil seeds
 - Microbial fermentation sources
 - Plankton
- Finishing feeds
Focusing production systems technology development

• Build consensus on goals
 • Productivity, financial sustainability
 • Environmental responsibility, climate change effects, resource utilization efficiencies
 • Community socioeconomics, food security
• Develop quantitative criteria and metrics
 • Heritability and genetic gain
 • Fish in:Fish out, nutrient conversion efficiencies
 • Energy and carbon efficiencies
 • Income and food generation per unit area/input
• Evaluate progress, outcomes and impacts

Production systems

• Cage Production of Marine Finfish
 Dr. Richard Langan
• Land-based Marine Fish Production
 Dr. Yonathan Zohar
• Coastal Shellfish Production
 Dr. Daniel Cheney
• Land-based Shrimp Production
 Dr. Craig L. Browdy

Traditional Aquaculture Systems

- Traditional small scale Asian aquaculture systems
- Local seed production potentially improved stocks
- Regional and local health screening and management
- Improved fertilization, water quality management
- Formulated feeds
 - Improved local ingredients, use of natural inputs
 - Improved productivity using waste cycling principles
- Sector organization to facilitate technology application
 - Cooperatives
 - Medium scale entrepreneurs
 - Technology application throughout value chain

Integrated Multi-trophic Aquaculture

- Ecologically based from traditional approaches
- Nutrient waste from fed species for grazers, filter feeding species and primary producers
- Engineering use of additional trophic levels
 - Land based systems or cage culture systems
 - Efficiency and sustainability
 - Crop diversification, added value
 - Improved nutrient uptake
 - Improved social perceptions, marketing
- System profitability rather than single species
Land Based Systems

- **Food**
 - Filter feeders
 - Bivalves
 - Detritivores
 - Sea cucumber, mullet
 - Herbivores
 - Artemia
 - Macroalgae
 - Microalgae
 - Constructed Wetland
 - Abalone
 - Fish
 - Urchins

- **Pond based production of shrimp, tilapia**
- **No water exchange**
- **Oxygenation, mixing**
- **In situ biofiltration**
- **Waste mineralization**
- **Microbial protein**
- **Exclusion of pathogens**
- **Reduced cost**
- **Improved sustainability**
Experiments are underway to explore the role of natural productivity in improved ecologically based holistic approaches.

- **Organic feeds**
- **Wastes**
- **Biofloc**
- **Supplemental nutrition**
- **Fatty acids**
- **Water quality**
- **Waste cycling**

Bacteria
- Cyanobacteria
- Green algae
- Diatoms
- Dinoflagellates

Chemoautotrophs
- Photoautotrophs
- Heterotrophs

Information and Communications Technology

- Monitoring, control and automation
 - Risk management – catastrophic loss prevention
 - Water quality control
 - Feeding efficiency
 - Improved efficiencies
- Business, enterprise planning and management
- Quality and traceability
- Internet
 - Marketing, sales
 - Public relations
 - Remote management
- Research collaborations
 - Access to information
 - Education and extension
Conclusions

• Pace of technology development is increasing
• Advances in genetics, health, nutrition, production systems engineering and information technology have had profound effects on aquaculture production
• Innovation in sustainability and productivity have, in many cases, been implemented for and by large scale industrial aquaculture production systems
• Many examples of win/win improvements in sustainability and profitability

Conclusions

• Build consensus on goals and measurement indices to focus and measure progress and outputs of investments in technology development
• Increase development of technologies applicable to small and medium scale systems
• Extend availability of existing know-how and technologies
• Disseminate through cooperatives and investment in medium scale entrepreneurs and the value chain to support them
If you open up the mind, the opportunity to address both profits and social conditions are limitless. It's a process of innovation.

Jerry Greenfield